IMPORTANCE OF SUPPLEMENTATION & ITS ECONOMIC IMPACT

By Abhinav Srivastava Amway 12 April 2019

Cont	Contents					
	How well we Live?					
	Possible reasons					
	Global Reading (Economic Value of Supplementation) & Indian Perspective					
0	Way Forward					

Life should be Lived Well

Life Expectancy

Quality of Life

At what age do you feel 65?

Lancet Study: Measured Age Related Disease Burden against the Global Average of 65 Years Old

1

76 Years

Papua New Guinea

45 Years

India 58 Years Global Average 65 Years Japan

NCDs - 10 Years Early Onset for Indians (Lancet Study)

India's escalating burden of non-communicable diseases

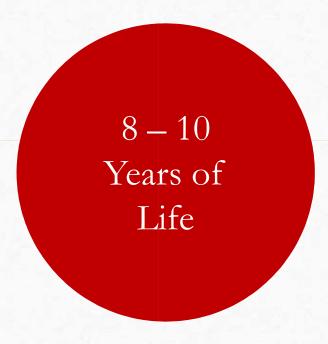
India's burden of non-communicable diseases (NCDs) is escalating. NCDs typically present in individuals aged 55 years or older in many developed countries, but their onset occurs in India a decade earlier (±45 years of age).13 Exacerbating this problem are the issues of multiple chronic conditions and the fact many remain undiagnosed due to lack of awareness and insufficient health-care access. At the same time, infectious and parasitic diseases still pose substantial challenges to the public health system in India, resulting in a double burden of disease and an important share of the global burden of disease.

Although the NCD burden has grown, India still does not have sufficiently detailed data on NCDs for

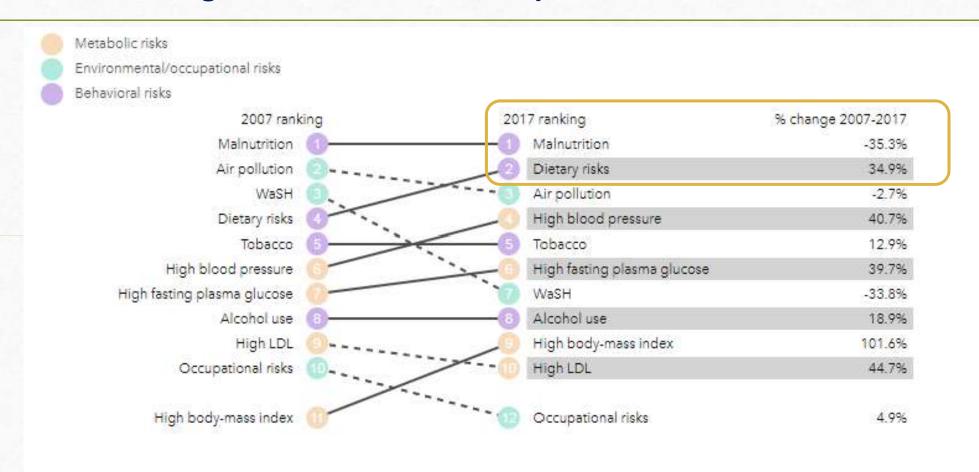
What new insights do these papers report on the mortality burden of India and its states? They offer a more fine-grained picture of long-term trends of cardiovascular diseases, respiratory diseases, and diabetes mortality in India. The India GBD Collaborators found that leading cardiovascular diseases--ischaemic heart disease and stroke-made the largest contribution to the total burden of mortality in India in 2016, at 281% (95% uncertainty interval [UI] 26-5-29:1).1 Furthermore, the contribution of cardiovascular diseases to mortality increased by 34-3% (26-6-43-7) from 1990. to 2016, which is not surprising given rapid population ageing and significantly increasing levels of the main risk factors for cardiovascular diseases-high systolic

Problem of Coding Distribut 3.0048 http://doi.ilia.org/10.1011/v \$20\$4.009001890448-0

See Articles page et 335, et 352,


Health Problems causing the most death in India (similar for disability too)

Top 10 causes of death in 2017 and percent change, 2007-2017, all ages, number


The Loss

Contents					
	How well we Live? Not so well seems				
_	Possible reasons				
_	Global Reading (Economic Value of Supplementation) & Indian Perspective				
	Way Forward				

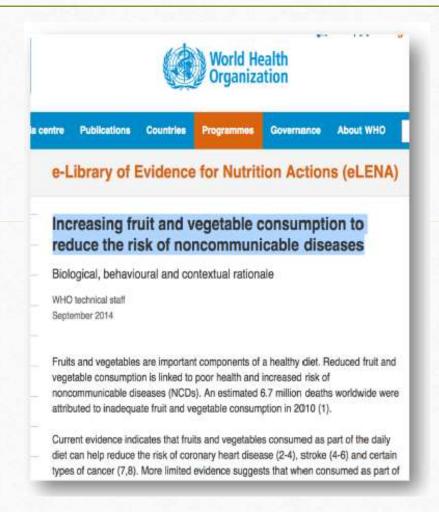
Risk Factors Driving the most death and disability in India

Top 10 risks contributing to DALYs in 2017 and percent change, 2007-2017, all ages, number

Let's Further Assess

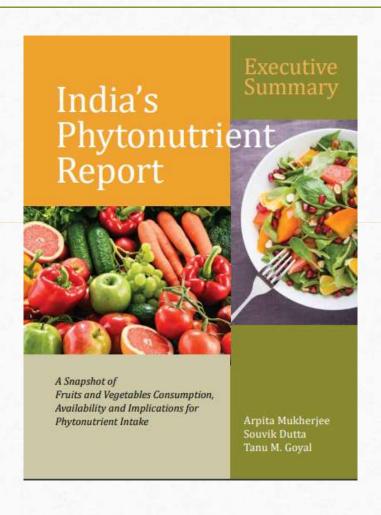
DO WE EAT SUFFICIENT

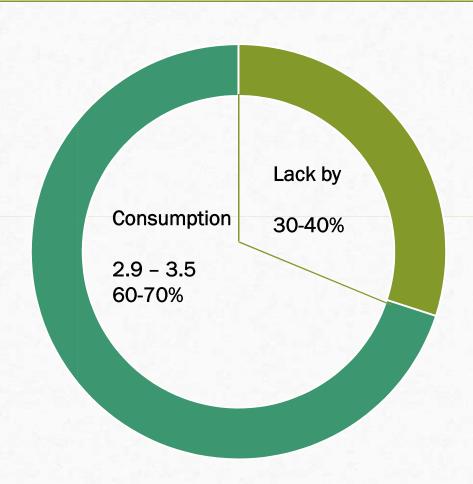
?

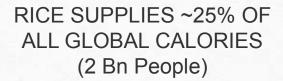

DO WE GET ENOUGH FROM WHAT WE EAT

?

DOES IT IMPACT US

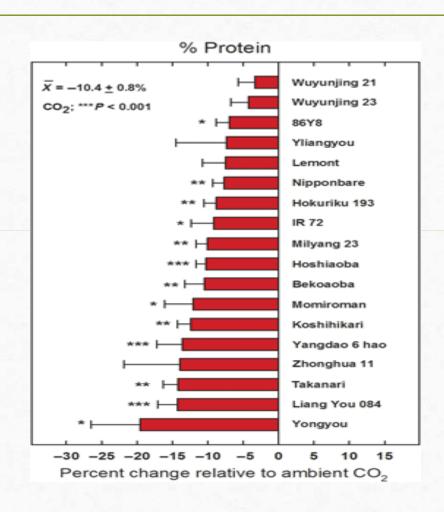

?


Lacking Diets – Globally

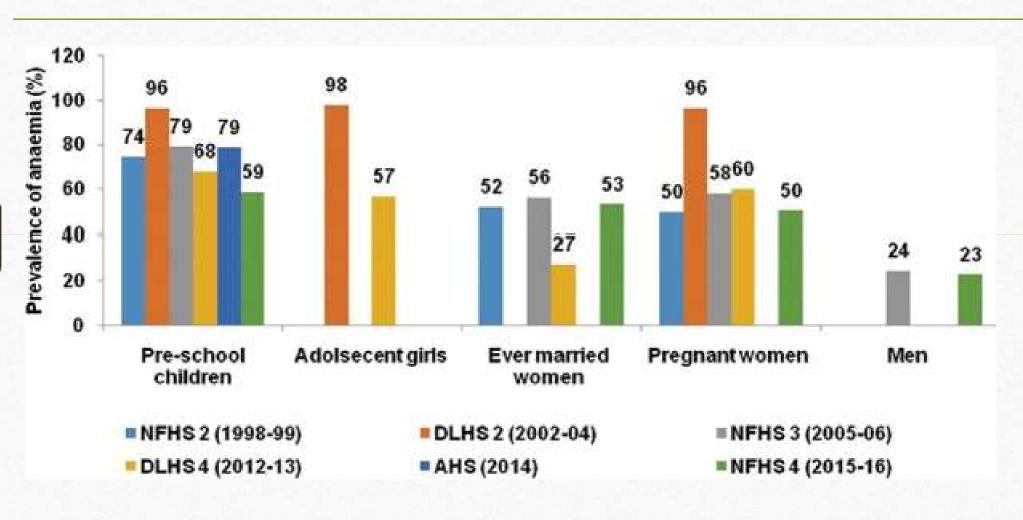


India is No Different - ICRIER Survey

Nutrient Loss – Global Warming



(-) 10% Protein


(-) 8% Iron

(-) 5% Zinc

(-) 13 to 30% Vitamins B

Impact - Anemia Still Affects over 50% of School Children in India

Impact - Vitamin B 12 Deficiency

Some recent surveys carried out in India to assess the prevalence of vitamin B12 deficiency

Study	Study area	Study design	Cut-off used for serum vitamin \mathbf{B}_{12}	Prevalence (%)
Chakraborty et al, 2015 ²¹	NCR Region and Haryana	Community-based cross-sectional study.	◆165 pmol()	22.4
		School-going adolescents (s=2402) (11-17 yr)		Rural: 42.9;
				Orban: 30.1
Gonmei er el, 201522	New Delta	Community-based cross-sectional study.	≥203 pg/ml	36.4
		Elderly aged 60 and above (n=77) residing in slums		
Gupta et el, 2017 ²²	Himackal Fradork	Community-based cross-sectional study.	-202 gg/m1	7.4
		Schoolchildren (n=015) aged 6-15 yr		
Verma 2017 ²⁶	Makaraditra	School-based cross-sectional study.	-200 pg/ml	72.7
		Adolescents (n=673) aged 11-15 yr		
Mittal et el, 2017 ²⁵	New Delta	Hospital-based cross-sectional study.	-200 pg/m1	Infante-57.0
		Term exclusively breamfed infants (n=100) aged 1-6 months		Methers-66.0
Goyal et el, 2017 ²⁶	Rajastkan	Hospital-based descriptive study.	■100 pg/m1	27.5
		SAM children (n=60)		
Surana en et, 2017 ²⁷	Gujarat	Hospital-based cross-sectional study.	■160 pg/ml	49.5
		Adolescents (n=011) aged 11-15 pr		
Gonnel et el, 2017 ²⁸	New Delta	Community-based cross-sectional study.	≠203 pg/m1	25.0
		Women (n=60) aged 60 and above residing in clums		
Stragmend et al, 2016 ²⁹	Telangana	Community-based cross-sectional study.	≠205 pg/ml	35.0
		Adults (n=620) aged 21-65 yr		
Gartina et el, 2016 ²⁰		Programt anaconic momen (n=257)	4000 pg/m1	67.0
Gugta Sansal er el, 2015 ²¹	New Delta	Community-based study:	-203 pg/ml	Anaemia-59.7,
		Adolescents (n=794) aged 11-15 yr		63.3 among anaemic adolese
Parmar et et, 2015 ²²	Gujarat	Hospital-based cross-sectional study.	≠200 pg/ml	44.4
				≠30 pr - 21.5
		Individuals (n=0660) aged 0-96 pr		20 to 60 yr - 29.3
				■60 pr - 60.5
Kapil et el, 2015 ²³	NCT Delta	Community-based cross-sectional study.	4 203 pg/ml	25.4
24		Children (n=470) agod 12-59 months		
Chahal et al, 2014 ²⁴	Himackal Fraderic	Observational study.	<000 pg/ml	65.6
.,		Adults (n=152) aged 15-62 yr		
Kapil and Bhadoria 2016 ²⁵	NCT Delki	School-based cross-sectional study.	≥200 pg/m1	73.5
.,		Adolescents (n=G47) aged 11-15 yr		
Bhardwaj er el, 2013 ²⁶	Himackal Fradeck	Community-based cross-sectional study.	◆200 pg/ml	100.0
		Adolescents (#=555) aged 11-19 yr (#=200 for blood sample)		
Shobha et al, 2011 ²⁷	Kamataka	Elderly (n=175) aged 60 and above		16.0
Mosos et el, 2011 ²⁵	Makaraditra	Community-based cross-sectional study.	-145 pmol/1	24.0
		Tribal and rural women of reproductive age (n=109)		

With respect to vitamin B_{12} deficiency, studies have indicated deficiency as high as 70-100 per cent.

This may also be because about 29 per cent of the Indian population is vegetarian.

SAM, severe seute maleutrition; NCT, National Capital Territory

Impact - Folate Deficiency

Surveys carried out in India to assess the prevalence of folate deficiency

Study	Study area	Study design	Cut-off used for serum folic acid	Prevalence (%a)
Bhide and Kar 2018 ⁵⁰	Maharashtra	Hospital-based study.	<3 ng ml	24.0
		Women (n=584) in early pregnancy		
Venua 2017 ²⁴	Maharashtra	School-based cross-sectional study:	<3 ng ml	40.2
		Adplescents (n=373) aged 11-18 yr		
Goyal et al. 2017 ²⁶	Rajasthan	Hospital-based descriptive study.	<3 ng ml	8.8
		SAM children (n=80)		
Gonmei et al. 2017 ²⁸	New Delhi	Community-based cross-sectional study	<4 pg ml	12.0
		Women (n=60) aged 60 and above residing in slums		
Gupta et al., 2017 ²³	Himachal Pradesh	Community-based cross-sectional study	<4 ng ml	1.5
		Schoolchildren (n=215) aged 6-18 yr		
Sivepresed et al, 2016 ²⁰	Telangana	Community-based cross-sectional study	<3 ng ml	12.0
		Adults (n=630) aged 21-85 yr		
Oupta Bansal et al, 2015	New Delhi	Community-based study	<4 ng ml	Ansemia - 58.7
		Adolescents (n=794) aged 11-18 yr		5 among ansemic adolescen
Kapil et al., 2015 ³³	NCT Delhi	Community-based cross-sectional study	<4 ng ml	63.2
		Children (n=470) aged 12-59 months		
Kapil and Bhadoria 2014 ³⁵	NCT Delhi	School-based cross-sectional study.	<3 ng mi	39.8
		Adolescents (n=347) aged 11-18 yr		
Bhardway et al., 2013 ³⁶	Himachal Pradesh	Community-based cross-sectional study	<2.7 ng ml	0
		Adolescents (n=885) aged 11-19 yr (n=200 for blood sample)		
Menon et al, 2011 ³⁸	Maharashtra	Community-based cross-sectional study	<6.8 mmol1	2.0
		Tribal and rural women (n=109) of reproductive age		

The prevalence of folate deficiency is not high as compared to vitamin B12 deficiency; however, studies carried out in New Delhi and Maharashtra among preschool children and adolescents have indicated deficiency of around 40 to 60 per cent

Impact - Vitamin D Deficiency

Vitamin D deficiency in India

P Aparna, 1 S Muthathal, 1 Baridalyne Nongkynrih, 1 and Sanjeev Kumar Gupta 1

· Author information · Copyright and License information Disclaimer

This article has been cited by other articles in PMC.

Vitamin D is a fat-soluble vitamin playing a vital role in human physiology. Vitamin D deficiency is prevalent worldwide. This deficiency has many consequences which are still being explored, apart from the well-known skeletal complications. With this review, we aim to summarize the existing literature on

Vitamin D status in India and understand the enormity of the problem. The prevalence of Vitamin D deficiency ranged from 40% to 99%, with most of the studies reporting a prevalence of 80%–90%. It was prevalent in all the age groups and high-risk groups alike. With the consequences of Vitamin D deficiency, namely, autoimmune diseases, cardiovascular diseases, cancer, and tuberculosis being explored, we can imagine the burden it would cause in our country. We need to create awareness among the public and

healthcare providers about the importance of Vitamin D and the consequences of deficiency. Our Indian diet generally fails to satisfy the daily requirement of Vitamin D for a normal adult. This stresses on the need for fortifying various food with Vitamin D, through the national programs. This silent epidemic should be addressed appropriately with concrete public health action.

Keywords: Fortification, India, prevalence, Vitamin D deficiency

Sources of Vitamin D3

Go to: 💟

The major source of Vitamin D is the endogenous synthesis in skin on exposure to sunlight, namely, ultraviolet B (UV-B) radiation of wavelength 290-320 nm. Main dietary sources are fish, fortified food, and supplements. Vegetables and grains are poor sources.

Synthesis of vitamin in skin on exposure to UV-B is also affected by latitude, solar zenith angle, atmospheric pollution, ozone layer, and melanin pigmentation [6]

Vitamin D status	The serum level of Vitamin D in ng/ml
Deficiency	<20
Insufficiency	21-29
Sufficiency	>30
Toxicity	>150

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060930/

Result

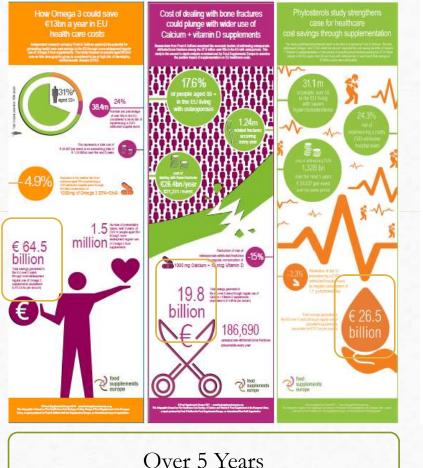
DO WE EAT SUFFICIENT?

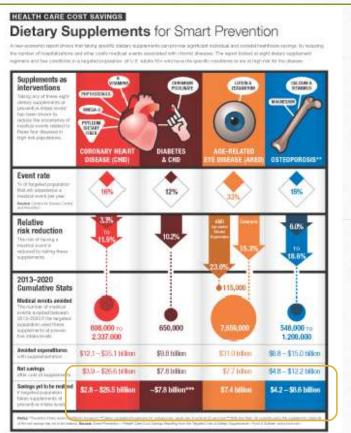
NO

DO WE GET ENOUGH FROM WHAT WINEY

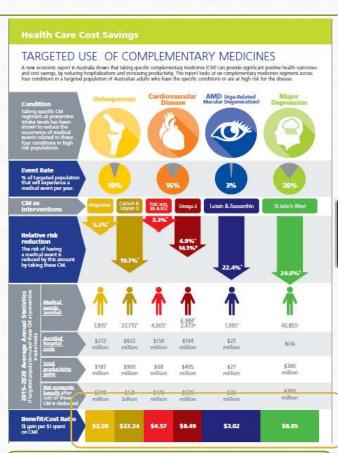
DOES IT IMPACT US?

YES

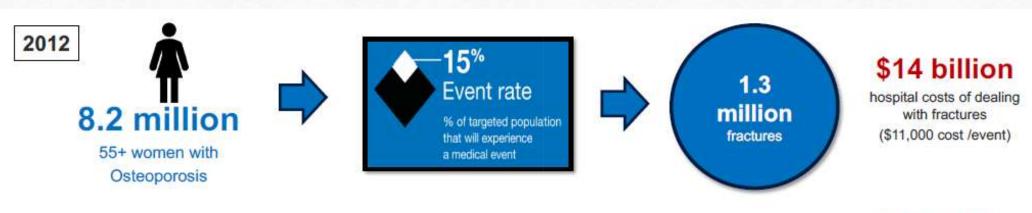

Contents	
☐ How well we Live? Not so well seems	
☐ Possible reasons – We eat Less; We get Less, Impact – Not Great	
☐ Global Reading (Economic Value of Supplementation) & Indian Perspective	
☐ Way Forward	

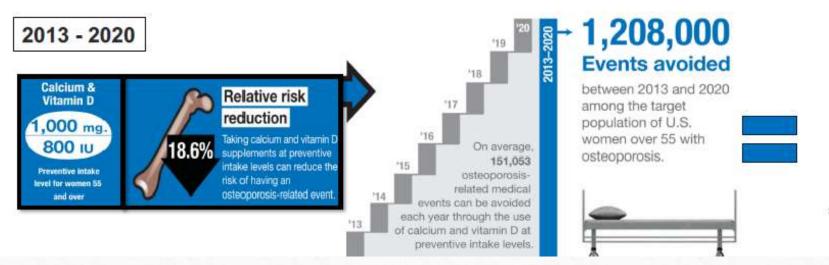

Health Care Cost Saving Studies

Studies have been conducted in a number of countries to investigate if use of targeted food supplements among consumers at a high risk of experiencing a costly disease related event could reduce risks and health care cost


SOURCE: FROST & SULLIVAN

Infographics - EU, USA, Australia




Over 8 Years

Over 6 Years

USA: Calcium and Vitamin D Supplementation and Osteoporosis


\$8.6 billion

Potential Savings

over 8 years as result of supplementation of target population with Calcium & Vitamin D (equivalent to \$1.08 billion / year)

EU: The Effect of Calcium and Vitamin D Supplementation

India Perspective: Cost Saving Potential – Much Higher

Rising Cases of NCDs – Bigger Possibilities for Us

15% of deaths in India were due to heart diseases in 1990; now up to 28%

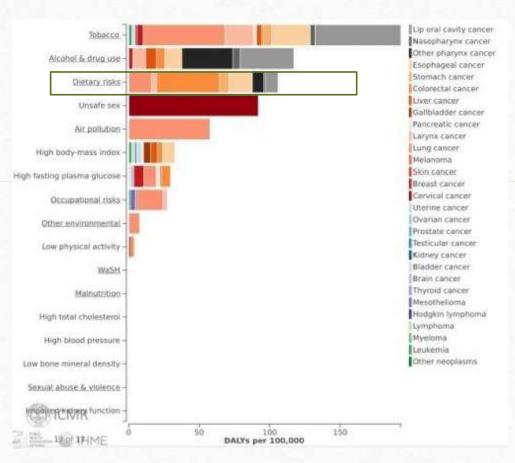
The number of people effected by cardiac diseases has doubled

Diabetes is India's fastest growing disease: 72 million cases recorded in 2017, figure expected to nearly double by 2025

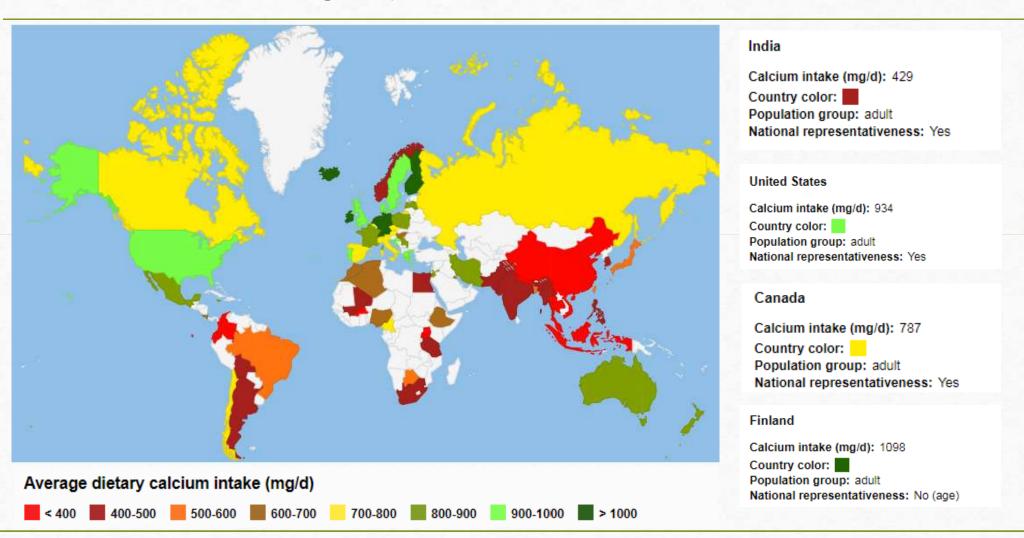
IndiaSpend Air LC AIR LINE I HARRIED BY

4

5. In the a preparation of the advantaged been been right beliefting to recognize and a larger halving of discharge

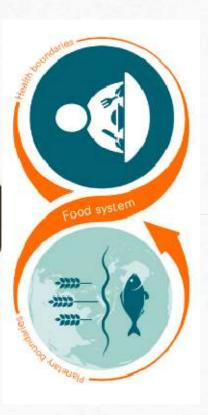

Rising Cases of NCDs – Bigger Possibilities for Us

HE SALES


9.6 million people will die of cancer this year

Two reports released on the same day tay that cancer is the second biggest idiler in India, while cancer deaths in the world this year

Risk Factors for Cancer - Lancet



RDA 400 IU (Vitamin D 10 mg / Day)

Contents How well we Live? Not so well seems Possible reasons – We eat Less; We get Less, Not so positive impact ☐ Global Reading (Economic Value of Supplementation) & Indian Perspective – Bigger Possibilities Outlook

Diet for 10 Mn Bn People by 2050 - Eat Lancet Commission

Global consumption of fruits, vegetables, nuts and legumes will have to double, and consumption of foods such as red meat and sugar will have to be reduced by more than 50%.

- ☐ Transformation to healthy diets by 2050 will require substantial dietary shifts.
- ☐ A diet rich in plant-based foods and with fewer animal source foods confers both improved health and environmental benefits.
- ☐ Supplements have a big role to play

Compressed Phytonutrients - Colorful Fruits & Vegetables in Convenient Formats

Levers for Next Level

■ Innovation

□ Regulation

□ Awareness

Thank You

- Approximately one third of cancers can be prevented.
- Up to 80% of heart disease, stroke and diabetes type 2 deaths are preventable.

